【篇一】
计算1×3+2×4+3×5+4×6+……+98×100+99×101
解:1×3+2×4+3×5+4×6+……+98×100+99×101
=(1×3+3×5+……+99×101)+(2×4+4×6+……+98×100)
=(99×101×103-1×3×5)÷6+1×3+98×100×102÷6
=171650+166600
=338250
计算1×1×1+2×2×2+3×3×3+……+99×99×99+100×100×100
分析:n×n×n=(n-1)×n×(n+1)+n
解:1×1×1+2×2×2+3×3×3+……+99×99×99+100×100×100
=1+(1×2×3+2)+(2×3×4+3)+……+(98×99×100+99)+(99×100×101+100)
=(1×2×3+2×3×4+……+98×99×100+99×100×101)+(1+2+3+……+99+100)
=99×100×101×102÷4+(1+100)×100÷2
=25492400
【篇二】
计算1×2+3×4+5×6+……+97×98+99×100
分析:(n-1)×n=(n-2)×n+n
解:1×2+3×4+5×6+7×8+……+97×98+99×100
=2+(2×4+4)+(4×6+6)+(6×8+8)+……+(96×98+98)+(98×100+100)
=(2×4+4×6+6×8+……+96×98+98×100)+(2+4+6+8+……+98+100)
=98×100×102÷6+(2+100)×50÷2
=169150
计算1×1+2×2+3×3+……+99×99+100×100
分析:n×n=(n-1)×n+n
解:1×1+2×2+3×3+……+99×99+100×100
=1+(1×2+2)+(2×3+3)+……+(98×99+99)+(99×100+100)
=(1×2+2×3+……+98×99+99×100)+(1+2+3+……+99+100)
=99×100×101÷3+(1+100)×100÷2
=333300+5050
=338350
【篇三】
计算10×16×22+16×22×28+……+70×76×82+76×82×88
分析:算式的特点为:数列公差为6,因数个数为3。
解:10×16×22+16×22×28+……+70×76×82+76×82×88
=(76×82×88×94-4×10×16×22)÷(6×4)
=2147376
通过以上例题,可以看出这类算式的特点是:从公差一定的数列中依次取出若干个数相乘,再把所有的乘积相加。其巧解方法是:先把算式中最后一项向后延续一个数,再把算式中最前面一项向前伸展一个数,用它们的差除以公差与因数个数加1的乘积。
将以上叙述可以概括一个口诀是:等差数列数,依次取几个。所有积之和,裂项来求作。后延减前伸,差数除以N。N取什么值,两数相乘积。公差要乘以,因个加上一。
需要注意的是:按照公差向前伸展时,当伸展数小于0时,可以取负数,当然是积为负数,减负要加正。对于小学生,这时候通常是把第一项甩出来,按照口诀先算出后面的结果再加上第一项的结果。
此外,有些算式可以先通过变形,使之符合要求,再利用裂项求解。
计算1×2×3+2×3×4+3×4×5+……+96×97×98+97×98×99
分析:这个算式实际上可以看作是:等差数列1、2、3、4、5……98、99、100,先将所有的相邻三项分别相乘,再求所有乘积的和。算式的特点概括为:数列公差为1,因数个数为3。
1×2×3=(1×2×3×4-0×1×2×3)÷(1×4)
2×3×4=(2×3×4×5-1×2×3×4)÷(1×4)
3×4×5=(3×4×5×6-2×3×4×5)÷(1×4)
……
96×97×98=(96×97×98×99-95×96×97×98)÷(1×4)
97×98×99=(97×98×99×100-96×97×98×99)÷(1×4)
右边累加,括号内相互抵消,整个结果为(97×98×99×100-0×1×2×3)÷(1×4)。
解:1×2×3+2×3×4+3×4×5+…+96×97×98×+97×98×99
=(97×98×99×100-0×1×2×3)÷(1×4)
=23527350