【第一篇】
计算1×3+2×4+3×5+4×6+……+98×100+99×101
解:1×3+2×4+3×5+4×6+……+98×100+99×101
=(1×3+3×5+……+99×101)+(2×4+4×6+……+98×100)
=(99×101×103-1×3×5)÷6+1×3+98×100×102÷6
=171650+166600
=338250
【第二篇】
计算1×1×1+2×2×2+3×3×3+……+99×99×99+100×100×100
分析:n×n×n=(n-1)×n×(n+1)+n
解:1×1×1+2×2×2+3×3×3+……+99×99×99+100×100×100
=1+(1×2×3+2)+(2×3×4+3)+……+(98×99×100+99)+(99×100×101+100)
=(1×2×3+2×3×4+……+98×99×100+99×100×101)+(1+2+3+……+99+100)
=99×100×101×102÷4+(1+100)×100÷2
=25492400
【第三篇】
计算1×2+3×4+5×6+……+97×98+99×100
分析:(n-1)×n=(n-2)×n+n
解:1×2+3×4+5×6+7×8+……+97×98+99×100
=2+(2×4+4)+(4×6+6)+(6×8+8)+……+(96×98+98)+(98×100+100)
=(2×4+4×6+6×8+……+96×98+98×100)+(2+4+6+8+……+98+100)
=98×100×102÷6+(2+100)×50÷2
=169150