【篇一】
有人沿公路前进,对面来了一辆汽车,他问司机:“后面有自行车吗?”司机回答:“十分钟前我超过一辆自行车”,这人继续走了十分钟,遇到自行车,已知自行车速度是人步行速度的三倍,问汽车的速度是步行速度的()倍.
考点:多次相遇问题.
分析:人遇见汽车的时候,离自行车的路程是:(汽车速度-自行车速度)×10,这么长的路程要自行车和人合走了10分钟,即:(自行车+步行)×10,等式:(汽车速度-自行车速度)×10=(自行车+步行)×10,即:汽车速度-自行车速度=自行车速度+步行速度.汽车速度=2×自行车速度+步行速度,又自行车的速度是步行的3倍,所以汽车速度是步行的7倍.
解答:(汽车速度-自行车速度)×10=(自行车+步行)×10,
即:汽车速度-自行车速度=自行车速度+步行速度.
汽车速度=2×自行车速度+步行,又自行车的速度是步行的3倍,
所以汽车速度=(2×3+1)×步行速度=步行速度×7.
故答案为:7.
点评:解答此题的关键是要推出:汽车与自行车的速度差等于人与自行车的速度和.
【篇二】
1.前进钢铁厂用两辆汽车从距工厂90千米的矿山运矿石,现有甲、乙两辆汽车,甲车自矿山,乙车自钢铁厂同时出发相向而行,速度分别为每小时40千米和50千米,到达目的地后立即返回,如此反复运行多次,如果不计装卸时间,且两车不作任何停留,则两车在第三次相遇时,距矿山多少千米?
解析请看下一页
分析:在往返来回相遇问题中,第相遇两人合走完一个全程,以后每次再相遇,都合走完两个全程.即:两人相遇时是在他们合走完1,3,5个全程时.然后根据路程÷速度和=相遇时间解答即可.
解答:解答:①第三次相遇时两车的路程和为:
90+90×2+90×2,
=90+180+180,
=450(千米);
②第三次相遇时,两车所用的时间:
450÷(40+50)=5(小时);
③距矿山的距离为:40×5-2×90=20(千米);
答:两车在第三次相遇时,距矿山20千米.
点评:在多次相遇问题中,相遇次数n与全程之间的关系为:1+(n-1)×2个全程=一共行驶的路程.
【篇三】
求两地之间的距离
1.给出两人的速度以及某次相遇的时间,求两地距离。
举个例子
A大学的小李和B大学的小孙分别从自己学校同时出发,不断往返于A、B两地之间。现已知小李的速度为85米/分钟,小孙的速度为105米/分钟,且经过12分钟后两人第三次相遇。问AB两地距离为多少?
【解析】通过题干条件,我们可以得出两者速度和为85+105=190,时间为12,可求出两者路程和为190×12,第三次相遇路程和等于五倍的两地间距,所以AB=190×12÷5=456。
⒉题干中给出的是相遇地点的位置,比如相遇点距离两地的距离,或者是距离中点的距离,由于相遇时两人处于同一位置,所以我们只需要考虑其中一人的路程变化就可以了。