首页>小学奥数>导航 > 热点专题

六年级奥数试题及答案环形跑道问题

2017-08-10 16:32:00 来源:无忧考网
【导语】天高鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩用好分秒时间,积累点滴知识,解决疑难问题,学会举一反三。以下是®无忧考网为大家整理的《六年级奥数试题及答案环形跑道问题》供您查阅。
【一:环形跑道】
 难度:高难度



  
甲、乙二人在环形跑道上跑步,甲的速度是每秒跑4米,乙的速度是每秒跑4.8米,甲跑__________圈后,乙可超过甲一圈.





讲解:



  

【二:环形跑道问题】

一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒分别爬行5.5厘米和3.5厘米.它们每爬行1秒,3秒,5秒…(连续的奇数),就调头爬行.那么,它们相遇时已爬行的时间是多少秒?



考点:环形跑道问题.



  
分析:道题难在蚂蚁爬行的方向不断地发生变化,那么如果这两只蚂蚁都不调头爬行,相遇时它们已经爬行了多长时间呢?非常简单,由于半圆周长为:1.26÷2=0.63米=63厘米,所以可列式为:1.26÷2÷(5.5+3.5)=7(秒);我们发现蚂蚁爬行方向的变化是有规律可循的,它们每爬行1秒、3秒、5秒、…(连续的奇数)就调头爬行.每只蚂蚁先向前爬1秒,然后调头爬3秒,再调头爬5秒,这时相当于在向前爬1秒的基础上又向前爬行了2秒;同理,接着向后爬7秒,再向前爬9秒,再向后爬11秒,再向前爬13秒,这就相当于一共向前爬行了1+2+2+2=7(秒),正好相遇.



  
解答解:它们相遇时应是行了半个圆周,半个圆周长为:



  
1.26÷2=0.63(米)=63(厘米);



  
如不调头,它们相遇时间为:



  
63÷(3.5+5.5)=7(秒);



  
根据它们调头再返回的规律可知:



  
由于1-3+5-7+9-11+13=7(秒),



  
所以13+11+9+7+5+3+1=49(秒)相遇.



  
答:它们相遇时已爬行的时间是49秒.



  
点评:完成本题关健是发现蚂蚁爬行方向的变化是有规律可循.

【三:环形跑道相遇】

小学奥数最新更新
推荐阅读
网站首页 网站地图 返回顶部
无忧考网移动版
京公网安备 11010802026788号