首页>小学奥数>导航 > 热点专题

小学奥数关于流水行船的训练

2018-11-27 11:40:00 来源:无忧考网
【导语】恰当的习题有助于学生建立学习信心,感受数学的严谨性和确定性,提高用数学语言进行表达和交流的能力,进而形成正确的数学观念。以下是©无忧考网整理的相关资料,希望对您有所帮助。


【篇一】


  流水行船问题的公式及例题讲解

  流水问题是研究船在流水中的行程问题,因此,又叫行船问题。在小学数学中涉及到的题目,一般是匀速运动的问题。这类问题的主要特点是,水速在船逆行和顺行中的作用不同。

  流水问题有如下两个基本公式:

  顺水速度=船速+水速(1)

  逆水速度=船速-水速(2)

  这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。

  公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。

  公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。

  根据加减互为逆运算的原理,由公式(1)可得:

  水速=顺水速度-船速(3)

  船速=顺水速度-水速(4)

  由公式(2)可得:

  水速=船速-逆水速度(5)

  船速=逆水速度+水速(6)

  这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。

  另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:

  船速=(顺水速度+逆水速度)÷2(7)

  水速=(顺水速度-逆水速度)÷2(8)


【篇二】


  例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。此船在静水中的速度是多少?(适于高年级程度)

  解:此船的顺水速度是:

  25÷5=5(千米/小时)

  因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。

  5-1=4(千米/小时)

  综合算式:

  25÷5-1=4(千米/小时)

  答:此船在静水中每小时行4千米。

  *例2一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。水流的速度是每小时多少千米?(适于高年级程度)

  解:此船在逆水中的速度是:

  12÷4=3(千米/小时)

  因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:

  4-3=1(千米/小时)

  答:水流速度是每小时1千米。

  *例3一只船,顺水每小时行20千米,逆水每小时行12千米。这只船在静水中的速度和水流的速度各是多少?(适于高年级程度)

  解:因为船在静水中的速度=(顺水速度+逆水速度)÷2,所以,这只船在静水中的速度是:

  (20+12)÷2=16(千米/小时)

  因为水流的速度=(顺水速度-逆水速度)÷2,所以水流的速度是:

  (20-12)÷2=4(千米/小时)

  答略。


【篇三】


  例1某船在静水中每小时行18千米,水流速度是每小时2千米。此船从甲地逆水航行到乙地需要15小时。求甲、乙两地的路程是多少千米?此船从乙地回到甲地需要多少小时?(适于高年级程度)

  解:此船逆水航行的速度是:

  18-2=16(千米/小时)

  甲乙两地的路程是:

  16×15=240(千米)

  此船顺水航行的速度是:

  18+2=20(千米/小时)

  此船从乙地回到甲地需要的时间是:

  240÷20=12(小时)

  答略。

  *例2某船在静水中的速度是每小时15千米,它从上游甲港开往乙港共用8小时。已知水速为每小时3千米。此船从乙港返回甲港需要多少小时?(适于高年级程度)

  解:此船顺水的速度是:

  15+3=18(千米/小时)

  甲乙两港之间的路程是:

  18×8=144(千米)

  此船逆水航行的速度是:

  15-3=12(千米/小时)

  此船从乙港返回甲港需要的时间是:

  144÷12=12(小时)

  综合算式:

  (15+3)×8÷(15-3)

  =144÷12

  =12(小时)

  答略。

小学奥数最新更新
推荐阅读
网站首页 网站地图 返回顶部
无忧考网移动版
京公网安备 11010802026788号