分析与解:将至少有连续三位数是1的五位数分成三类:连续五位是1、恰有连续四位是1、恰有连续三位是1。连续五位是1,只有11111一种;
中任一个,所以有3+3=6(种);
3×4+4×3+3×3=33(种)。
由加法原理,这样的五位数共有
1+6+33=40(种)。
在此题中,我们先将这种五位数分为三类,以后在某些类中又分了若干种情况,其中使用的都是加法原理。
下图中每个小方格的边长都是1。一只小虫从直线AB上的O点出发,沿着横线与竖线爬行,可上可下,可左可右,但最后仍要回到AB上(不一定回到O点)。如果小虫爬行的总长是3,那么小虫有多少条不同的爬行路线?
分析与解:如果小虫爬行的总长是2,那么小虫从AB上出发,回到AB上,其不同路线有6条(见左下图);小虫从与AB相邻的直线上出发,回到AB上,其不同路线有4条(见下图)。
实际上,小虫爬行的总长是3。小虫爬行的第一步有四种情况:
向左,此时小虫还在AB上,由上面的分析,后两步有6条路线;
同理,向右也有6条路线;
向上,此时小虫在与AB相邻的直线上,由上面的分析,后两步有4条路线;
同理,向下也有4条路线。
根据加法原理,共有不同的爬行路线
6+6+4+4=20(条)